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Web  Results 1 - 10 of about 7,310,000 for miele. (0.12 seconds)  

Miele, Inc -- Anything else is a compromise 
At the heart of your home, Appliances by Miele. ... USA. to miele.com. Residential Appliances. 
Vacuum Cleaners. Dishwashers. Cooking Appliances. Steam Oven. Coffee System ...  
www.miele.com/ - 20k - Cached - Similar pages  

Miele 
Welcome to Miele, the home of the very best appliances and kitchens in the world.  
www.miele.co.uk/ - 3k - Cached - Similar pages  

Miele - Deutscher Hersteller von Einbaugeräten, Hausgeräten ... - [ Translate this 
page ] 
Das Portal zum Thema Essen & Geniessen online unter www.zu-tisch.de. Miele weltweit 
...ein Leben lang. ... Wählen Sie die Miele Vertretung Ihres Landes.  
www.miele.de/ - 10k - Cached - Similar pages  

Herzlich willkommen bei Miele Österreich - [ Translate this page ] 
Herzlich willkommen bei Miele Österreich Wenn Sie nicht automatisch 
weitergeleitet werden, klicken Sie bitte hier! HAUSHALTSGERÄTE ...  
www.miele.at/ - 3k - Cached - Similar pages  

 

 

 

 

  
Sponsored Links 

 
CG Appliance Express 
Discount Appliances (650) 756-3931 
Same Day Certified Installation 
www.cgappliance.com 
San Francisco-Oakland-San Jose, 
CA 
 
Miele Vacuum Cleaners 
Miele Vacuums- Complete Selection 
Free Shipping! 
www.vacuums.com 
 
Miele Vacuum Cleaners 
Miele-Free Air shipping! 
All models. Helpful advice. 
www.best-vacuum.com 
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§ Text	acquisition
§ identifies	and	stores	documents	for	indexing

§ Text	transformation
§ transforms	documents	into	index	terms

§ Index	creation
§ takes	index	terms	and	creates	data	structures	(indexes)	to	support	fast	searching
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Index servers
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Query 
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§User	interaction
§ supports	creation	and	refinement	of	query,	display	of	results

§Ranking
§ uses	query	and	indexes	to	generate	ranked list	of	documents

§Evaluation
§monitors	and	measures	effectiveness	and	efficiency	
(primarily	offline)
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§Crawler
§ Identifies	and	acquires	documents	for	search	engine
§Many	types	– web,	enterprise,	desktop
§Web	crawlers	follow	links to	find	documents

§ Must	efficiently	find	huge	numbers	of	web	pages	(coverage)	and	keep	
them	up-to-date	(freshness)

§ Single	site	crawlers	for	site	search
§ Topical or focused crawlers	for	vertical search

§ Document crawlers	for	enterprise	and	desktop	search
§ Follow	links	and	scan	directories

12
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§Starts	with	a	set	of	seeds,	which	are	a	set	of	URLs	
given	to	it	as parameters

§Seeds	are	added	to	a	URL	request	queue
§Crawler	starts	fetching	pages	from	the	request	queue
§Downloaded	pages	are	parsed	to	find	link	tags	that	
might	contain	other	useful	URLs	to	fetch

§New	URLs	added	to	the	crawler’s	request	queue,	or	
frontier

§Continue	until	no	more	new	URLs	or	disk	full

13

Architecture

14

Web

URLs crawled
and parsed

URLs frontier

Unseen Web

Seed
pages

Architecture



8

15
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§ Parser
§ Processing	the	sequence	of	text	tokens in	the	document	to	
recognize	structural	elements
§ e.g.,	titles,	links,	headings,	etc.

§ Tokenizer recognizes	“words”	in	the	text
§ must	consider	issues	like	capitalization,	hyphens,	apostrophes,	non-alpha	
characters,	separators

§Markup	languages	such	as	HTML,	XML	often	used	to	specify	
structure
§ Tags used	to	specify	document	elements

§ E.g.,	<h2>	Overview	</h2>
§ Document	parser	uses	syntax of	markup	language	(or	other	formatting)	to	
identify	structure

16
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§Stopping
§Remove	common	words	(stop	words)

§ e.g.,	“and”,	“or”,	“the”,	“in”

§Some	impact	on	efficiency	and	effectiveness
§Can	be	a	problem	for	some	queries

§Stemming
§Group	words	derived	from	a	common	stem

§ e.g.,	“computer”,	“computers”,	“computing”,	“compute”

§Usually	effective,	but	not	for	all	queries
§Benefits	vary	for	different	languages

17

Architecture

§Link	Analysis
§Makes	use	of	links and	anchor text in	web	pages
§ Link	analysis	identifies	popularity and	community
information
§ e.g.,	PageRank

§ Anchor	text	can	significantly	enhance	the	representation	of	
pages	pointed	to	by	links

§ Significant	impact	on	web	search
§ Less	importance	in	other	applications

18
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§ Information	Extraction
§ Identify	classes	of	index	terms	that	are	important	for	some	
applications

§ e.g.,	named	entity	recognizers	identify	classes	such	as	people,
locations, companies, dates, etc.

§Classifier
§ Identifies	class-related	metadata	for	documents

§ i.e.,	assigns	labels	to	documents
§ e.g.,	topics,	reading	levels,	sentiment,	genre

§ Use	depends	on	application

19
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§Document	Statistics
§ Gathers	counts	and	positions	of	words	and	other	features
§ Used	in	ranking	algorithm

§Weighting
§ Computes	weights	for	index	terms
§ Used	in	ranking	algorithm
§ e.g., tf.idf weight

§ Combination	of	term	frequency	in	document	and	inverse	document	
frequency	in	the	collection

20
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§ Inversion
§ Core	of	indexing	process
§ Converts	document-term information	to	term-document for	
indexing
§ Difficult	for	very	large	numbers	of	documents

§ Format	of	inverted	file	is	designed	for	fast	query	processing
§ Must	also	handle	updates
§ Compression	used	for	efficiency

21

Architecture

§ Index Distribution
§ Distributes indexes across multiple computers and/or 

multiple sites
§ Essential for fast query processing with large 

numbers of documents
§ Many variations

§ Document distribution, term distribution, replication

§ P2P and distributed IR involve search across multiple 
sites

Architecture
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§Query	input
§ Provides	interface	and	parser	for	query	language
§Most	web	queries	are	very	simple,	other	applications	may	
use	forms

§ Query	language	used	to	describe	more	complex	queries	and	
results	of	query	transformation
§ e.g.,	Boolean	queries,	Indri	and	Galago	query	languages
§ similar	to	SQL	language	used	in	database	applications
§ IR	query	languages	also	allow	content	and	structure	specifications,	but	
focus	on	content

24
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§Query	transformation
§ Improves	initial	query,	both	before	and	after	initial	search
§ Includes	text	transformation	techniques	used	for	documents
§ Spell	checking	and	query	suggestion provide	alternatives	to	
original	query

§ Query	expansion	and	relevance	feedbackmodify	the	original	
query	with	additional	terms

25
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§Results	output
§ Constructs	the	display	of	ranked	documents	for	a	query
§ Generates	snippets to	show	how	queries	match	documents
§ Highlights important	words	and	passages
§ Retrieves	appropriate	advertising in	many	applications
§May	provide	clustering and	other	visualization	tools

26
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§
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§Performance optimization
§ Designing ranking algorithms for efficient processing

§ Term-at-a time vs. document-at-a-time processing
§ Safe vs. unsafe optimizations

§Distribution
§ Processing queries in a distributed environment
§ Query broker distributes queries and assembles 

results
§ Caching is a form of distributed searching

28

Architecture
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§Logging
§ Logging user queries and interaction is crucial for 

improving search effectiveness and efficiency
§ Query logs and clickthrough data used for query 

suggestion, spell checking, query caching, ranking, 
advertising search, and other components

§Ranking analysis
§ Measuring and tuning ranking effectiveness

§Performance analysis
§ Measuring and tuning system efficiency

29

§ General Search: identify relevant information with a 
horizontal/exhaustive view of the world.

§ Vertical Search:
§ Focus on specific segment of web content
§ Integrate domain knowledge (e.g. taxonomies /ontology), & deep web 
§ Examples: travel in Expedia, products in Amazon.

30
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§Architecture	of	Search	Engines

§ Index	Construction	

§Boolean	Retrieval

§Vector	Space	Model	for	Ranked	Retrieval
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§Which	plays	of	Shakespeare	contain	the	words	Brutus
AND Caesar but	NOT Calpurnia?

§One	could	grep all	of	Shakespeare’s	plays	for	Brutus
and	Caesar, then	strip	out	lines	containing	Calpurnia?

§Why	is	that	not	the	answer?
§ Slow	(for	large	corpora)
§ NOT Calpurnia is	non-trivial
§ Other	operations	(e.g.,	find	the	word	Romans	near
countrymen)	not	feasible

§ Ranked	retrieval	(best	documents	to	return)

33

Index	Construction

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

34

1 if play contains 
word, 0 otherwise

Brutus AND Caesar BUT NOT
Calpurnia

Index	Construction
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§So	we	have	a	0/1	vector	for	each	term.
§To	answer	query:	take	the	vectors	for	Brutus,	Caesar
and	Calpurnia (complemented)	è bitwise	AND.

§110100	AND 110111	AND 101111	=	100100.	

35
35

Index	Construction

§Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,

He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

§Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i' the

Capitol; Brutus killed me.

36

Index	Construction
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§Collection:	Fixed	set	of	documents
§Goal:	Retrieve	documents	with	information	that	is	
relevant to	the	user’s	information	need and	helps	the	
user	complete	a	task

37

Index	Construction

38Corpus

TASK

Info Need

Query

Verbal 
form

Results

SEARCH
ENGINE

Query
Refinement 

Get rid of mice in a 
politically correct way

Info about removing mice
without killing them 

How do I trap mice alive?

mouse trap

Misconception?

Mistranslation?

Misformulation?

Index	Construction
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§Consider	N	=	1	million	documents,	each	with	about	
1000	words.

§Avg	6	bytes/word	including	spaces/punctuation	
§ 6GB	of	data	in	the	documents.

§Say	there	are	M	=	500K	distinct terms	among	these.

39

Index	Construction

§500K	x	1M	matrix	has	half-a-trillion	0’s	and	1’s.
§But	it	has	no	more	than	one	billion	1’s.

§matrix	is	extremely	sparse.

§What’s	a	better	representation?
§We	only	record	the	1	positions.

40

Why?

Index	Construction
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§For	each	term	t,	we	must	store	a	list	of	all	documents	
that	contain	t.
§ Identify	each	by	a	docID,	a	document	serial	number

§Can	we	use	fixed-size	arrays	for	this?

41

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

What happens if the word Caesar
is added to document 14? 

174

54101

Index	Construction

§We	need	variable-size	postings	lists
§ On	disk,	a	continuous	run	of	postings	is	normal	and	best
§ In	memory,	can	use	linked	lists	or	variable	length	arrays

§ Some	tradeoffs	in	size/ease	of	insertion

42
42

Dictionary Postings
Sorted by docID (more later on why).

Posting

Brutus

Calpurnia

Caesa
r

1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Index	Construction
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Tokenizer

Token stream. Friends Romans Countrymen
Linguistic 
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

Index	Construction

§ Sequence	of	(Modified	token,	Document	ID)	pairs.

44

I did enact Julius
Caesar I was killed 

i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Index	Construction



23

§Sort	by	terms
§ And	then	docID	

45

Core	indexing	step

Index	Construction

§Multiple	term	entries	
in	a	single	document	
are	merged.

§Split	into	Dictionary	
and	Postings

§Doc.	frequency	
information	is	added.

46

Index	Construction
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47Pointers

Terms	
and	

counts

Lists	of	
docIDs

Index	Construction

§For	web-scale	indexing	
must	use	a	distributed	computing	cluster

§ Individual	machines	are	fault-prone
§ Can	unpredictably	slow	down	or	fail

§How	do	we	exploit	such	a	pool	of	machines?
§MapReduce	for	indexing

48

Index	Construction
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§We	will	use	two	sets	of	parallel	tasks
§ Parsers
§ Inverters

§Break	the	input	document	collection	into	splits
§Each	split	is	a	subset	of	documents

49

Index	Construction

§Master	assigns	a	split	to	an	idle	parser	machine
§Parser	reads	a	document	at	a	time	and	emits	(term,	
doc)	pairs

§Parser	writes	pairs	into	j partitions
§Each	partition	is	for	a	range	of	terms’	first	letters

§ (e.g.,	a-f,	g-p,	q-z)	– here	j	=	3.

§Now	to	complete	the	index	inversion

50

Index	Construction
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§An	inverter	collects	all	(term,doc)	pairs	(=	postings)	for	
one	term-partition.

§Sorts	and	writes	to	postings	lists

51

Index	Construction

52

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Index	Construction
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Schema	of	map	and	reduce	functions
§map:	input	→	list(k,	v)					reduce:	(k,list(v))	→	output
Instantiation	of	the	schema	for	index	construction
§map:	web	collection	→	list(termID,	docID)
§ reduce:	(<termID1,	list(docID)>,	<termID2,	list(docID)>,	…)	→	
(postings	list1,	postings	list2,	…)

Example	for	index	construction
§map: d2	:	C	died.	d1	:	C	came,	C	c’ed.	→	(<C,	d2>,	<died,d2>,	
<C,d1>,	<came,d1>,	<C,d1>,	<c’ed,	d1>

§ reduce: (<C,(d2,d1,d1)>,	<died,(d2)>,	<came,(d1)>,	<c’ed,(d1)>)		
→		(<C,(d1:2,d2:1)>,	<died,(d2:1)>,	<came,(d1:1)>,	
<c’ed,(d1:1)>) 53

Index	Construction

Inverted Index
with counts

• supports better              
ranking algorithms

54
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§Matching phrases or words within a window 
explicitly or implicitly.
§ e.g., "tropical fish", or “find tropical within 5 words 

of fish”

§Word positions in inverted lists make these types 
of query features efficient
§ e.g.,

55

§Store, for each term, entries of the form:
<number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

56
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§ this expands postings storage substantially

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

57

Inverted Index
with positions

• supports 
proximity matches

58
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§ Document structure is useful in search
§ field restrictions

§ e.g., date, from:, etc.
§ some fields more important

§ e.g., title

§ Options:
§ separate inverted lists for each field type
§ add information about fields to postings
§ use extent lists to mark special areas in a document

59

§ An extent is a contiguous region of a document
§ represent extents using word positions
§ inverted list records all extents for a given field type
§ e.g.  

§ 1:(1,3)  à title in document 1 is from 1 to 3 

extent list

60
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§ Precomputed scores in inverted list
§ e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature value for 

document 1
§ improves speed but reduces flexibility

§ Score-ordered lists
§ query processing engine can focus only on the top part of each inverted 

list, where the highest-scoring documents are recorded
§ very efficient for single-word queries

61

§Number of docs = n = 40M
§Number of terms = m = 1M
§Use Zipf to estimate number of postings entries:

§ n + n/2 + n/3 + …. + n/m ~ n ln m = 560M entries
§ 16-byte (4+8+4) records (term, doc, freq).

§9GB
§No positional info yet

Check for
yourself

62
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§ Need an entry for each occurrence, not just once per document
§ Index size depends on average document size

§ Average web page has <1000 terms
§ SEC filings, PDF files, … easily 100,000 terms

§ Consider a term with frequency 0.1% in a doc

1001100,000

111000

Positional postingsPostingsDocument size

63

§ Inverted lists are very large
§ Much higher if n-grams are indexed

§ Compression of indexes saves disk and/or memory space
§ Typically have to decompress lists to use them
§ Best compression techniques have good compression ratios and are easy 

to decompress

§ Lossless compression – no information lost

64
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§Positional index size factor of 2-4 over non-
positional index

§Positional index size 35-50% of volume of original 
text

§Caveat: all of this holds for “English-like”
languages

65

§ Basic idea: Common data elements use short codes while uncommon 
data elements use longer codes
§ Example: coding numbers

§ number sequence: 0, 1, 0, 2,0,3,0

§ possible encoding:

§ encode 0 using a single 0:

§ only 10 bits, but...

66
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§Ambiguous encoding – not clear how to decode
§ another decoding:

§ which represents:

§ use unambiguous code:

§ which gives:

67

§Word count data is good candidate for 
compression
§ many small numbers and few larger numbers
§ encode small numbers with small codes

§Document numbers are less predictable
§ but differences between numbers in an ordered list are 

smaller and more predictable

§Delta encoding:
§ encoding differences between document numbers (d-

gaps)

68
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§ Inverted list (without counts)

§ Differences between adjacent numbers

§ Differences for a high-frequency word  are easier to compress, 
e.g.,

§ Differences for a low-frequency word are large, e.g.,

69

§ Breaks between encoded numbers can occur after any bit position
§ Unary code

§ Encode k by k 1s followed by 0
§ 0 at end makes code unambiguous

70
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§Unary is very efficient for small numbers such as 
0 and 1, but quickly becomes very expensive
§ 1023 can be represented in 10 binary bits, but requires 

1024 bits in unary

§Binary is more efficient for large numbers, but it 
may be ambiguous

71

§ To encode a number k, compute

§ kd is number of binary digits, encoded in unary

72
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§Elias-γ code uses no more bits than unary, many 
fewer for k > 2
§ 1023 takes 19 bits instead of 1024 bits using unary

§ In general, takes 2⌊log2k⌋+1 bits
§To improve coding of large numbers, use Elias-δ 
code
§ Instead of encoding kd in unary, we encode kd + 1 using 

Elias-γ
§ Takes approximately 2 log2 log2 k + log2 k bits

73

§ Split kd into:

§ encode kdd in unary, kdr in binary, and kr in binary

74
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§Variable-length bit encodings can be a problem 
on processors that process bytes

§v-byte is a popular byte-aligned code
§ Similar to Unicode UTF-8

§Shortest v-byte code is 1 byte
§Numbers are 1 to 4 bytes, with high bit 1 in the 
last byte, 0 otherwise

76



39

77

78



40

79

§Consider invert list with positions:

§Delta encode document numbers and positions:

§Compress using v-byte:

80
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§Architecture	of	Search	Engines

§ Index	Construction	

§Boolean	Retrieval

§Vector	Space	Model	for	Ranked	Retrieval

81

§How	do	we	process	a	(Boolean)	query?

82
82

Boolean	Retrieval
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§ Consider	processing	the	query:
Brutus AND Caesar
§ Locate	Brutus in	the	Dictionary;

§ Retrieve	its	postings.
§ Locate Caesar in	the	Dictionary;

§ Retrieve	its	postings.
§ “Merge”	the	two	postings:

83
83

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar

Boolean	Retrieval

§Walk	through	the	two	postings	simultaneously,	in	time	
linear	in	the	total	number	of	postings	entries

84
84

34
1282 4 8 16 32 64

1 2 3 5 8 13 21
128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar2 8

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by docID.

Boolean	Retrieval
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85

Boolean	Retrieval

} The Boolean retrieval model is being able to ask a query that is a 
Boolean expression:
} Boolean Queries are queries using AND, OR and NOT to join query 

terms
} Views each document as a set of words
} Is precise: document matches condition or not.

} Perhaps the simplest model to build an IR system on

} Primary commercial retrieval tool for 3 decades. 

} Many search systems you still use are Boolean:
} Email, library catalog, Mac OS X Spotlight

Boolean	Retrieval
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§ Largest commercial (paying subscribers) legal search 
service (started 1975; ranking added 1992)

§ Tens of terabytes of data; 700,000 users

§ Majority of users still use boolean queries

§ Example query:
§ What is the statute of limitations in cases involving the federal 

tort claims act?
§ LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

§ /3 = within 3 words, /S = in same sentence

87
87

Boolean	Retrieval

§ Another	example	query:
§ Requirements	for	disabled	people	to	be	able	to	access	a	workplace
§ disabl!	/p	access!	/s	work-site	work-place	(employment	/3	place

§ Note	that	SPACE	is	disjunction,	not	conjunction!
§ Long,	precise	queries;	proximity	operators;	incrementally	
developed;	not	like	web	search

§Many	professional	searchers	still	like	Boolean	search
§ You	know	exactly	what	you	are	getting

§ But	that	doesn’t	mean	it	actually	works	better….

88

Boolean	Retrieval
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§Architecture	of	Search	Engines

§ Index	Construction	

§Boolean	Retrieval

§Vector	Space	Model	for	Ranked	Retrieval

89

§Thus	far,	our	queries	have	all	been	Boolean.
§ Documents	either	match	or	don’t.

§Good	for	expert	users	with	precise	understanding	of	
their	needs	and	the	collection.
§ Also	good	for	applications:	Applications	can	easily	consume	
1000s	of	results.

§Not	good	for	the	majority	of	users.
§Most	users	incapable	of	writing	Boolean	queries	(or	they	are,	
but	they	think	it’s	too	much	work).

§Most	users	don’t	want	to	wade	through	1000s	of	results.
§ This	is	particularly	true	of	web	search.

90

Ranked	Retrieval
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§Boolean	queries	often	result	in	either	too	few	(=0)	or	
too	many	(1000s)	results.

§Query	1:	“standard	user	dlink	650”	→	200,000	hits
§Query	2:	“standard	user	dlink	650	no	card	found”:	0	
hits

§ It	takes	a	lot	of	skill	to	come	up	with	a	query	that	
produces	a	manageable	number	of	hits.
§ AND	gives	too	few;	OR	gives	too	many 91

Ranked	Retrieval

§Rather	than	a	set	of	documents	satisfying a	query	
expression,	in	ranked	retrieval	models,	the	system	
returns	an	ordering	over	the	(top)	documents	in	the	
collection	with	respect	to	a	query

§Free	text	queries:	Rather	than	a	query	language	of	
operators	and	expressions,	the	user’s	query	is	just	one	
or	more	words	in	a	human	language

§ In	principle,	there	are	two	separate	choices	here,	but	
in	practice,	ranked	retrieval	models	have	normally	
been	associated	with	free	text	queries	and	vice	versa
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§When	a	system	produces	a	ranked	result	set,	large	
result	sets	are	not	an	issue
§ Indeed,	the	size	of	the	result	set	is	not	an	issue
§We	just	show	the	top	k	(	≈	10)	results
§We	don’t	overwhelm	the	user

§ Premise:	the	ranking	algorithm	works
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Ranked	Retrieval

§ Consider	the	number	of	occurrences	of	a	term	in	a	document:	
§ Each	document	is	a	count	vector	in	ℕv:	a	column	below	
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Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Ranked	Retrieval
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§Vector	representation	doesn’t	consider	the	ordering	
of	words in	a	document

§ John	is	quicker	than	Mary and	Mary	is	quicker	than	
John have	the	same	vectors

§This	is	called	the	bag	of	words model.
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Ranked	Retrieval

§ The	term	frequency	tft,d of	term	t in	document	d is	defined	as	
the	number	of	times	that	t	occurs	in	d.

§We	want	to	use	tf when	computing	query-document	match	
scores.	But	how?

§ Raw	term	frequency	is	not	what	we	want:
§ A	document	with	10	occurrences	of	the	term	is	more relevant than	a	
document	with	1	occurrence	of	the	term.

§ But	not	10	times	more	relevant.

§ Relevance	does	not	increase	proportionally	with	term	
frequency.
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NB: frequency = count in IR

Ranked	Retrieval
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§ The	log	frequency	weight	of	term	t	in	d	is

§ 0	→	0,	1	→	1,	2	→	1.3,	10	→	2,	1000	→	4,	etc.
§ Score	for	a	document-query	pair:	sum	over	terms	t in	both	q
and	d

§ score

§ The	score	is	0	if	none	of	the	query	terms	is	present	in	the	
document.
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Ranked	Retrieval

§Rare terms	are	more	informative	than	frequent	terms
§ Recall	stop	words

§Consider	a	term	in	the	query	that	is	rare	in	the	
collection	(e.g.,	arachnocentric)

§A	document	containing	this	term	is	very	likely	to	be	
relevant	to	the	query	arachnocentric

§→	We	want	a	high	weight for rare	terms	like	
arachnocentric.
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§ Frequent terms	are	less	informative	than	rare	terms
§ Consider	a	query	term	that	is	frequent	in	the	collection	(e.g.,	
high,	increase,	line)

§ A	document	containing	such	a	term	is	more	likely	to	be	relevant	
than	a	document	that	doesn’t

§ But	it’s	not	a	sure	indicator	of	relevance.
§→	For	frequent	terms,	we	want	high	positive	weights	for	words	
like	high,	increase,	and	line

§ But	lower	weights	than	for	rare	terms.
§We	will	use	document	frequency	(df)	to	capture	this.

99
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§

100

)/df( log  idf 10 tt N=

Will turn out the base of the log is immaterial.
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term dft idft
calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

101

There is one idf value for each term t in a collection.

)/df( log  idf 10 tt N=

Ranked	Retrieval

§ Does	idf have	an	effect	on	ranking	for	one-term	queries,	like
§ iPhone

§ idf has	no	effect	on ranking	one	term	queries
§ idf	affects	the	ranking	of	documents	for	queries	with	at	least	two	terms
§ For	the	query	capricious	person,	idf	weighting	makes	occurrences	of	
capricious count	for	much	more	in	the	final	document	ranking	than	
occurrences	of	person.
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§ The	tf-idf weight	of	a	term	is	the	product	of	its	tf	weight	and	its	
idf	weight.

§ Best	known	weighting	scheme in	information	retrieval
§ Note:	the	“-”	in	tf-idf	is	a	hyphen,	not	a	minus	sign!
§ Alternative	names:	tf.idf,	tf	x	idf

§ Increases	with	the	number	of	occurrences	within	a	document
§ Increases	with	the	rarity	of	the	term	in	the	collection
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Score(q,d) = tf.idft,dt∈q∩d∑
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Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 
vector of tf-idf weights ∈ R|V|

Ranked	Retrieval

§ So	we	have	a	|V|-dimensional	vector	space

§ Terms	are	axes	of	the	space

§ Documents	are	points	or	vectors	in	this	space

§ Very	high-dimensional:	tens	of	millions	of	dimensions	when	
you	apply	this	to	a	web	search	engine

§ These	are	very	sparse vectors	- most	entries	are	zero.
106
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§ Key	idea	1: Do	the	same	for	queries:	represent	them	as	vectors	
in	the	space

§ Key	idea	2: Rank	documents	according	to	their	proximity	to	the	
query	in	this	space

§ proximity	=	similarity	of	vectors
§ proximity	≈	inverse	of	distance
§ Recall:	We	do	this	because	we	want	to	get	away	from	the	
you’re-either-in-or-out	Boolean	model.

§ Instead:	rank	more	relevant	documents	higher	than	less	
relevant	documents
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Ranked	Retrieval

§ A	vector	can	be	(length-)	normalized	by	dividing	each	of	its	
components	by	its	length	– for	this	we	use	the	L2 norm:

§ Dividing	a	vector	by	its	L2 norm	makes	it	a	unit	(length)	vector	
(on	surface	of	unit	hypersphere)
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Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Vector	Space	Model

§ For	length-normalized	vectors,	cosine	similarity	is	simply	the	dot	product	(or	
scalar	product):

for	q,	d	length-normalized.
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Vector	Space	Model
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term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How	similar	are

the	novels

SaS:	Sense	and

Sensibility

PaP:	Pride	and

Prejudice,	and

WH:	Wuthering

Heights?
Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.

Vector	Space	Model
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term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588
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Log	frequency	weighting After	length	normalization

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Vector	Space	Model
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§ Represent	the	query	as	a	weighted	tf-idf	vector

§ Represent	each	document	as	a	weighted	tf-idf	vector

§ Compute	the	cosine	similarity	score	for	the	query	vector	and	
each	document	vector

§ Rank	documents	with	respect	to	the	query	by	score

§ Return	the	top	K (e.g.,	K =	10)	to	the	user
115


