(3426 SEARCH ENGINES

Spring 2016

OUTLINE

= Architecture of Search Engines
= Index Construction
= Boolean Retrieval

= Vector Space Model for Ranked Retrieval

) nigritude ultramarine - Google Search - Mozilla Firefox

Fle Edt View Go Bookmarks Yahoo! Tools Help

<:EI I L\’/ . @ % @ [G] http: ffwww.google.com/searchat ide +

v © e (Gl

B Getting Started B Latest Headiines

Y? -2~ v ‘ searchWeb » @ ~ | (9 Mail ~) My Yahoo! g Games ~ Bl Movies » § Music ~ € Answers ~) Personals ~ [signn ~

Web Local more »

‘ Searcl

Images Groups News Froogle

‘nigrimde ultramarine

Advanced Search

Preferences

pragh60@gmail.com | My Account | Sign out #

Google

Web

Anil Dash: Nigritude Ultramarine

Do me a favor: Link to this post with the phrase Nigritude Ultramarine. ... Just placed a lin
to your Nigritude Ultramarine article on my weblog. Cheers! ...
www.dashes_com/anil/2004/06/04/nigritude_ultra - 101k - Mar 1, 2006 -

Nigritude Ultramarine FAQ
Nigritude Ul ine FAQ - fr I
the realted SEO contest
www.nigritudeultramarines.com/ - 59k

asked

about nigritude ultramarine and

ed - Similar pages

SEO contest - Wikipedia, the free encyclopedia
The nigri ultramarine iti hGuild is widely accl; das ...
Comparison of search results for nigritude ultramarine during and after the ...

en.wikipedia.org/wiki/Nigritude_ultramarine - 37k - C - Similar pages

Slashdot | How To Get Googled. By Hook Or By Crook

The current 3rd result showcases the "Nigritude Ultramarine Fighting Force” who ... When
discussing nigritude ultramarine [slashdot.org] it is important to
slashdot.org/article.pl?sid=04/05/09/1840217 - 110k Similar pages

The Nigritude Ultramarine Search Engine Optimization Contest
It's sweeping the web - or at least search engine optimizers - a new contest to rank tops for
the term nigritude ultramarine on Google.
searchenginewatch.com/sereport/article.php/3360231 - 57k

d - Similar pages

Results 1 - 10 of about 185,000 for nigritude ultramarine. (0.35 seconds)

Sponsored Links

Paid
Search Ads

@ to L.A. March 16
Top bloggers reveal key techniques
www._blogbusinesssummit.com
Los Angeles, CA

Full-Time SEO & SEM Jobs
Find companies big & small hiring
full-time SEO & SEM pros right now
CareerBuilder.com

SEO Contests

Information on SEO Contests like
the Nigritude Ultramarine contest.
www.seo-contests.com/

The SEO Book
Nigritude Ultramarine & SEO secrets
Fun, free, raw, & different

oy

<:¢ Algorithmic results.

Overstock.com v

Done

ARCHITECTURE OF SEARCH ENGINES (SE)

=How do search engines like Google work?

Indexer

A

The Web

Indexes Ad indexes

()

INDEXING PROCESS

\ - Text Acquisition Index Creation - 8
E-mail, Web pages, s ‘
News articles, Memos, Letters Index

Text Transformation

INDEXING PROCESS

= Text acquisition
= identifies and stores documents for indexing

= Text transformation

« transforms documents into Index terms

= Index creation
= takes index terms and creates data structures (indexes) to support fast searching

INDEXING AND MINING AT ASK.COM

ocuments

<

-t

DOCUMENT SEARCH ENGINE

Index servers
(partition 1)

Firewall/
Web switch

Y

=
e
—

Index servs
(partition 2)

=
— ! Index servers

Doc servers (partition 3)

S ©

Web server/
Query handlers

QUERY PROCESS

- T

L T . g
\P\‘)/} \{ L User Interaction Ranking
Index

8 <:> Evaluation
a

QUERY PROCESS

= User interaction
= supports creation and refinement of query, display of results

= Ranking
= uses query and indexes to generate ranked list of documents

= Evaluation

= monitors and measures effectiveness and efficiency
(primarily offline)

DETAILS: TEXT ACQUISITION

= Crawler
= |dentifies and acquires documents for search engine
= Many types — web, enterprise, desktop
= Web crawlers follow /inks to find documents

= Must efficiently find huge numbers of web pages (coverage) and keep
them up-to-date (freshness)

= Single site crawlers for site search
= Topical or focused crawlers for vertical search

= Document crawlers for enterprise and desktop search
= Follow links and scan directories

WEB CRAWLER

= Starts with a set of seeds, which are a set of URLs
given to it as parameters

=Seeds are added to a URL request queue
= Crawler starts fetching pages from the request queue

= Downloaded pages are parsed to find link tags that
might contain other useful URLs to fetch

= New URLs added to the crawler’s request queue, or
frontier

= Continue until no more new URLs or disk full

()

CRAWLING PICTURE

URLs crawled
and parsed

Unseen Web

| URLs frontier

CRAWLING THE WEB

findex heml

J005 5 toryhted

J2006/09 fstoryheml
J2003/04 fsto ryheml

—i www.whiteho nse.gov '—

F 3

I crawlersearchengine.com ‘ @

TEXT TRANSFORMATION

= Parser
* Processing the sequence of text tokens in the document to
recognize structural elements
= e.g., titles, links, headings, etc.
= Tokenizer recognizes “words” in the text

= must consider issues like capitalization, hyphens, apostrophes, non-alpha
characters, separators

= Markup languages such as HTML, XML often used to specify
structure
= Tags used to specify document elements
= E.g., <h2> Overview </h2>
= Document parser uses syntax of markup language (or other formatting) to

identify structure

TEXT TRANSFORMATION

= Stopping
= Remove common words (stop words)

s

. e‘g.’ llandll’ llor”’ ”the"' llln
=Some impact on efficiency and effectiveness
= Can be a problem for some queries

=Stemming
= Group words derived from a common stem

= e.g., “computer”, “computers”, “computing”, “compute”
= Usually effective, but not for all queries

= Benefits vary for different languages

TEXT TRANSFORMATION

= Link Analysis

= Makes use of links and anchor text in web pages

= Link analysis identifies popularity and community
information
= e.g., PageRank

= Anchor text can significantly enhance the representation of
pages pointed to by links

= Significant impact on web search
= Less importance in other applications

TEXT TRANSFORMATION

= Information Extraction

= |dentify classes of index terms that are important for some
applications

= e.g., named entity recognizers identify classes such as people,
locations, companies, dates, etc.

= Classifier
= |dentifies class-related metadata for documents

= i.e., assigns labels to documents
= e.g., topics, reading levels, sentiment, genre

= Use depends on application

INDEX CREATION

= Document Statistics
= Gathers counts and positions of words and other features
= Used in ranking algorithm

= Weighting
= Computes weights for index terms
= Used in ranking algorithm
= e.g., tf.idf weight

= Combination of term frequency in document and inverse document
frequency in the collection

10

INDEX CREATION

= |nversion
= Core of indexing process

= Converts document-term information to term-document for
indexing
= Difficult for very large numbers of documents
= Format of inverted file is designed for fast query processing
= Must also handle updates
= Compression used for efficiency

INDEX CREATION

» Index Distribution

= Distributes indexes across multiple computers and/or
multiple sites

= Essential for fast query processing with large
numbers of documents

= Many variations
* Document distribution, term distribution, replication

= P2P and distributed IR involve search across multiple
sites

©

11

QUERY PROCESS

Document data store

o

User Interaction <:> Ranking <:>
<:> Evaluation

Index

LogData

USER INTERACTION

=Query input

= Provides interface and parser for query language

= Most web queries are very simple, other applications may
use forms

= Query language used to describe more complex queries and
results of query transformation
= e.g., Boolean queries, Indri and Galago query languages
= similar to SQL language used in database applications

= IR query languages also allow content and structure specifications, but
focus on content

()

12

USER INTERACTION

= Query transformation
= Improves initial query, both before and after initial search
= Includes text transformation techniques used for documents
= Spell checking and query suggestion provide alternatives to
original query
= Query expansion and relevance feedback modify the original
guery with additional terms

USER INTERACTION

= Results output
= Constructs the display of ranked documents for a query
= Generates snippets to show how queries match documents
= Highlights important words and passages
= Retrieves appropriate advertising in many applications
= May provide clustering and other visualization tools

13

RANKING

kScoring
= Calculates scores for documents using a ranking algorithm
= Core component of search engine

= Basic form of score is Zq; d,
= g;and d; are query and document term weights for term i
= Many variations of ranking algorithms and retrieval models

ONLINE SYSTEM SUPPORT

= Performance optimization
* Designing ranking algorithms for efficient processing
= Term-at-a time vs. document-at-a-time processing
= Safe vs. unsafe optimizations

= Distribution
= Processing queries in a distributed environment

* Query broker distributes queries and assembles
results

= Caching is a form of distributed searching

14

EVALUATION

=Logging
= Logging user queries and interaction is crucial for
improving search effectiveness and efficiency

= Query logs and clickthrough data used for query
suggestion, spell checking, query caching, ranking,
advertising search, and other components
= Ranking analysis
= Measuring and tuning ranking effectiveness

= Performance analysis
= Measuring and tuning system efficiency

GENERAL SEARCH VS.VERTICAL SEARCH

= General Search: identify relevant information with a
horizontal/exhaustive view of the world.

* Vertical Search:
= Focus on specific segment of web content
= Integrate domain knowledge (e.g. taxonomies /ontology), & deep web
= Examples: travel in Expedia, products in Amazon.

ertical
search

f

Other data sources

Deep web data Vertical datal @ @ @ e @
and domain objects
knowledge
Vertical mining Web data

©

15

EXAMPLE OF VERTICAL SEARCH: QUESTION
ANSWERING

44 where s my stimulus che...

AskErase

where is my stinuus

Web | Images | News | DealS | Videos = QsA More -

Top Answers

46 Wellf you requested your stimulus check to arrive by mail then you can expect to it
approximately 6 weeks for it to armive. If you are expecting direct deposit then the wait time Wi e shout 2
weeks

htp://ans where_is_my_st . See entire page »

m/Business/Fi

46 There are no stimulus check being mailed out this year. Instead of receiving a check from the
gormment, st singl expayers wil se an acustent to ther e ihodng i thelr pycheck i
2009 and 2010, gving them about 45 &

/question/index?qid=2009041111... See entire page »

hitp://ans

6 that's why u guys should have signed up for direct deposit | received mine a month ago and stimulated
vegas with it lol

B bl

See more answers to your question »

my-stimul...See entire page »

topic/santa-ana

Answers to Other Common Questions

Are people with social security ans ssi going to get stimulus che.
£41n 2009 Rewees . SS1 and Disabled vets received a stimulus check of $250. ChaCha
jestion/are-people-with-soc

wiw.cha

When will i receive my stimulus check?
& Finding when you'l receive your stimulus check will depend on a few things. It can depend on if youve already
filed or not and when youve filed. Of course, when it comes to the IRS, they have a specific schedule for any

wation. You ca

OUTLINE

= Architecture of Search Engines
» Index Construction
= Boolean Retrieval

= Vector Space Model for Ranked Retrieval

16

UNSTRUCTURED DATA IN 1680

= Which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia?

= One could grep all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing Calpurnia?

=Why is that not the answer?
= Slow (for large corpora)
= NOT Calpurnia is non-trivial

= Other operations (e.g., find the word Romans near
countrymen) not feasible

= Ranked retrieval (best documents to return)

TERM-DOCUMENT INCIDENCE

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1if contains

17

INCIDENCE VECTORS

=So we have a 0/1 vector for each term.

= To answer query: take the vectors for Brutus, Caesar
and Calpurnia (complemented) =» bitwise AND.

=110100 AND 110111 AND 101111 =100100.

ANSWERS T0 QUERY
=Antony and Cleopatra, Act III, Scene ii

Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

=Hamlet, Act III, Scene ii

Lord Polonius: I did enact Julius Caesar I was killed i' the

Capitol; Brutus killed me.

18

BASIC ASSUMPTIONS OF INFORMATION
RETRIEVAL

= Collection: Fixed set of documents

= Goal: Retrieve documents with information that is
relevant to the user’s information need and helps the
user complete a task

THE CLASSIC SEARCH MODEL

Get rid of mice in a
politically correct way

Misconception?

Info about removing mice
without killing them

Mistranslation?
How do I trap mice alive?

Misformulation? i—-'l
Findthis: | mouse trap | onylnguage ¢|

©

19

BIGGER COLLECTIONS

= Consider N = 1 million documents, each with about
1000 words.

= Avg 6 bytes/word including spaces/punctuation
* 6GB of data in the documents.

= Say there are M = 500K distinct terms among these.

CAN'T BUILD THE MATRIX

= 500K x 1M matrix has half-a-trillion 0’s and 1’s.

= But it has no more than one billion 1’s.
= matrix is extremely sparse. Why?

= What’s a better representation?
= We only record the 1 positions.

20

INVERTED INDEX

= For each term t, we must store a list of all documents
that contain t.

= |dentify each by a doclD, a document serial number

= Can we use fixed-size arrays for this?

Brutus| "——>[112 [4[11] 31] 45[173174]
Caesar| "——>[1] 2] 41 5[6 [16[57[132]

Calpurnige——>[2 31541001 [[[]

What happens if the word Caesar
is added to document 14?

INVERTED INDEX

= We need variable-size postings lists
= On disk, a continuous run of postings is normal and best
= In memory, can use linked lists or variable length arrays

= Some tradeoffs in size/ease of insertion

Brutus m——>[112] 4[11[31] 451730174

Caesa we——>[TT 2[47 5[6 [16[57[132]
Calpurnia v——>[2 131154001 [[[|

Dictionary Postings
Sorted by docID (more later on why).D

21

INVERTED INDEX CONSTRUCTION

B g

Documents to am =70

be indexed.

Friends, Romans, countrymen.

Token stream. l Friends || Romans | | Countrymen
Linguistic
modules
Modified tokens. friend| |roman| |countryman
Indexer | friend s m—
Inverted index. 1 roman ne——>
countrymaf—— | 13 "@

INDEXER STEPS: TOKEN SEQUENCE

= Sequence of (Modified token, Document ID) pairs.

Doc 1 Doc 2
—
| did enact Julius So let it be with
Caesar | was killed Caesar. The noble
i the Capitol; Brutus hath told you
Brutus killed me. Caesar was ambitious

aaaaaa

aaaaaa

S
LIS I NI R N N N NI NI U N IE NN RN NN NN NN PIN NI NN © |

)

22

INDEXER STEPS: SORT

=Sort by terms
= And then docID

s 1

Core indexing step

Term
|

did
enact
julius
caesar
|

was
killed
i

the
capitol
brutus
killed

was
ambitious

doclD

[SINIECIE IO I I I NI T O CIE NP EN NN PEN SENGEN N ENJENJEN N

Term

ambitious

be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

|

with

docID

RS RORN RN AN SN a s aa s NN

INDEXER STEPS: DICTIONARY & POSTINGS

= Multiple term entries
in a single document
are merged.

= Split into Dictionary
and Postings

= Doc. frequency
information is added.

Term
ambitious
be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

told
you

with

docID

PR 2NN AN AN AN A aa AN A s

term doc. freq.

ambitious

be

brutus
capitol
caesar
did | 1
enact
hath
i[1

N

=

—

g

it

—

-

julius
killed

-

©
o
-

313
o
& ®
©
-]
=

A EIES

ol
E

™

—

you

was
with

N

—

l

L

l

1

== === ==l === ==]

postings lists

-2
-[2]

23

WHERE DO WE PRY IN STORAGE?

term doc. freq. — postings lists
ambitious — [2]
b — a
. = ﬁ Lists of
doclDs
-

brutus

aaaaaa

!

T
2
=~

S
8 =
EsiE

!

Terms

and >

counts

=
=3
>
=

-

EEEC

—

ala

-
HEEE
o
HH
=

L T T A A

!

!

S [== == === ==

A

=

£
Pointe

<

Sle|s]813
clzl® &
Pl
N

H

2

HH
Flo
™

DISTRIBUTED INDEXING

= For web-scale indexing
must use a distributed computing cluster

= Individual machines are fault-prone
= Can unpredictably slow down or fail

= How do we exploit such a pool of machines?
* MapReduce for indexing

24

PARALLEL TASKS

= We will use two sets of parallel tasks
= Parsers
= |Inverters

= Break the input document collection into splits

= Each split is a subset of documents

PARSERS

= Master assigns a split to an idle parser machine

= Parser reads a document at a time and emits (term,
doc) pairs

= Parser writes pairs into j partitions

= Each partition is for a range of terms’ first letters
= (e.g., a-f, g-p, q-z) —here j = 3.

= Now to complete the index inversion

25

INVERTERS

= An inverter collects all (term,doc) pairs (= postings) for
one term-partition.

= Sorts and writes to postings lists

DATA FLOW
assi’gﬁ,x*~---\q§§ign Postings

ors ~~x

parser—{atloalaziener {4

o
o o
o

a-flg-p|q-z 4z

wn
ogooo

=

wn

Map Segment files Reduce
phase phase

26

SCHEMA FOR INDEX CONSTRUCTION IN
MAPREDUCE

Schema of map and reduce functions

= map: input = list(k, v) reduce: (k,list(v)) = output
Instantiation of the schema for index construction

= map: web collection - list(termID, docID)

= reduce: (<termID1, list(docID)>, <termID2, list(docID)>, ...) >
(postings list1, postings list2, ...)

Example for index construction

= map: d2 : Cdied. d1: Ccame, Cc’ed. = (<C, d2>, <died,d2>,
<C,d1>, <came,d1>, <C,d1>, <c’ed, d1>

= reduce: (<C,(d2,d1,d1)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>)
- (<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>,

<c'ed,(d1:1)>) @
and only
aquarium pigmented
are popular
around refer
as referred
both requiring
bright salt
coloration saltwater
Inverted Index oretion e
with counts due termn
environments the
fish their
fishkeepers this |4:1
* supports better found those
ranking algorithms frech o
freshwater tropical
from typically
generally use
in water
include while
including with
iridescence | 4:1 world
marine |2:1
often @

27

PROXIMITY MATCHES

= Matching phrases or words within a window
explicitly or implicitly.
=e.g., "tropical fish", or “find tropical within 5 words
of fish”

=Word positions in inverted lists make these types
of query features efficient
eg.,

tropical [I,1] [L,7][26][2,17]

fish 2,7][2,18] [223] [32 |36 |[43 |[413]

©

POSITIONAL INDEXES

= Store, for each term, entries of the form:
<number of docs containing term;
doc1: position1, position2 ... ;
doc2: position1, position2 ... ;
etc.>

28

POSITIONAL INDEX EXAMPLE

<be: 993427,
1:7,18,33,72, 86, 231;

Which of docs 1,2,4,5
2: 3, 149; < could contain “to be
4:17, 191, 291, 430, 434;

or not to be”?
5:363, 367, ...>

= this expands postings storage substantially

and marine

aquarium often

are only

around pigmented

Inverted Index o popular
. . both refer
with positions brient referred
coloration requiring

derives salt

due saltwater

° Supports environments species
proximity matches ~ f fem
their

fishkeepers this

found those

fresh to

freshwater tropical

from typically

generally use

in water

include while

including with

iridescence world

FIELDS AND EXTENTS

= Document structure is useful in search
= field restrictions
= e.g., date, from:, etc.
= some fields more important
= e.g., title
= Options:
= separate inverted lists for each field type
= add information about fields to postings
= use extent lists to mark special areas in a document

EXTENT LISTS

= An extent is a contiguous region of a document
= represent extents using word positions
= inverted list records all extents for a given field type

= e.g.
= 1:(1,3) > title in document 1 is from 1 to 3
fish (27 [218] [223] [32 | [38 | [43] [413

it

extent list

30

OTHER ISSUES

= Precomputed scores in inverted list

= e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature value for
document 1

= improves speed but reduces flexibility

= Score-ordered lists

= query processing engine can focus only on the top part of each inverted
list, where the highest-scoring documents are recorded

= very efficient for single-word queries

ISSUE WITH DATR SIZE: EXAMPLE

= Number of docs = n = 40M
= Number of terms =m = 1M

= Use Zipf to estimate number of postings entries:
=n+n/2+n/3+....+n/m~nlnm=560M entries
= 16-byte (4+8+4) records (term, doc, freq).

“9GB Check for
=No positional info yet yourself

31

POSITIONAL INDEX SIZE

= Need an entry for each occurrence, not just once per document

= Index size depends on average document size
= Average web page has <1000 terms
= SEC filings, PDF files, ... easily 100,000 terms

= Consider a term with frequency 0.1% in a doc

Document size Postings Positional postings
1000 1 1
100,000 1 100

COMPRESSION

= Inverted lists are very large
= Much higher if n-grams are indexed

= Compression of indexes saves disk and/or memory space
= Typically have to decompress lists to use them

= Best compression techniques have good compression ratios and are easy

to decompress

= [ossless compression — no information lost

32

RULES OF THUMB

= Positional index size factor of 2-4 over non-
positional index

= Positional index size 35-50% of volume of original
text

= Caveat: all of this holds for “English-like”
languages

COMPRESSION

= Basic idea: Common data elements use short codes while uncommon
data elements use longer codes
= Example: coding numbers

= number sequence: 0, 1, 0, 2,0,3,0

= possible encoding: () O1 00 10 00 11 00
= encode 0 using a single 0: 0010100110

= only 10 bits, but...

33

COMPRESSION EXAMPLE

= Ambiguous encoding — not clear how to decode
= another decoding: 0010100110

= which represents: 0,1,1,0,0,3,0

= use unambiguous code: Number | Code

101
110

1
= which gives: 2
3 111

0101011101100

DELTR ENCODING

=Word count data is good candidate for
compression
= many small numbers and few larger numbers
= encode small numbers with small codes

= Document numbers are less predictable

= but differences between numbers in an ordered list are
smaller and more predictable

= Delta encoding:

= encoding differences between document numbers (d-
gaps)

©

34

DELTA ENCODING

= Inverted list (without counts)

1,5,9,18, 23,24, 30, 44, 45, 48

= Differences between adjacent numbers

1,4,4,9,5,1,6,14,1,3

= Differences for a high-frequency word are easier to compress,
e.g.,
1,1,2,1,5,1,4,1,1,3, ...
= Differences for a low-frequency word are large, e.g.,

109, 3766, 453, 1867, 992, ...

BIT-ALIGNED CODES

= Breaks between encoded numbers can occur after any bit position

= Unary code
= Encode k by k 1s followed by 0
= 0 at end makes code unambiguous

Number | Code
0

10

110
1110
11110
111110

TR W NN~ O

35

UNARY AND BINARY CODES

=Unary is very efficient for small numbers such as

0 and 1, but quickly becomes very expensive

= 1023 can be represented in 10 binary bits, but requires

1024 bits in unary

=Binary is more efficient for large numbers, but it

may be ambiguous

ELIAS-I' CODE

= To encode a number k, compute

o kq = [logy k]

o k, =k — 2llog2 k]

= kyis number of binary digits, encoded in unary

Number (k) | kg | k. | Code
110 00
2|1 1 0100
3 1 1101
6| 2 2 | 110 10
15| 3 7| 1110 111
16 | 4 0 | 11110 0000
255 71127 | 11111110 1111111
1023 | 9| 511 | 1111111110 111111111

36

ELIAS-A CODE

= Elias-y code uses no more bits than unary, many
fewer for k > 2
= 1023 takes 19 bits instead of 1024 bits using unary

=In general, takes 2|log,k|+1 bits

= To improve coding of large numbers, use Elias-0
code
= Instead of encoding k, in unary, we encode k, + 7 using
Elias-y
= Takes approximately 2 log, log, k + log, k bits

(=)

ELIAS-A CODE

- Split ky into: o kqq = |logy(ka +1)]

° kdr — kd _ 2|_10g2(kd+1)J

= encode kyq in unary, kg, in binary, and k, in binary

Number (k) | kq kr | kgqa | kar | Code

1 0 0 0 00
2 1 0 1 011000
3 1 1 1 011001
6 2 2 1 110110

15 3 7 2 0| 110 00 111

16 4 0 2 1| 110 01 0000

255 7| 127 3 0 | 1110 000 1111111
1023 9 | 511 3 2 | 1110 010 111111111

37

#
Generating Elias-gamma and Elias-delta codes in Python
#

import math

def unary_encode(n):
return "1" * n + "0"

def binary_encode(n, width):
—
for i in range(0,width):
if ((1<<i) & n) > 0:
r="1"+r
else:
r="0" 41
return r

def gamma_encode(n) :
logn = int(math.log(n,2))
return unary_encode(logn) + " " + binary_encode(n, logn)

def delta_encode(n):
logn = int(math.log(n,2))
if n == 1:
return "0"
else:
loglog = int(math.log(logn+1,2))
residual = logn+l - int(math.pow(2, loglog))
return unary_encode(loglog) + " " + binary_encode(residual, loglog) + " "

if __name__ == "__main__":
for n in [1,2,3, 6, 15,16,255,1023]:

logn = int(math.log(n,2))
loglogn = int(math.log(logn+1,2))
print n, "d_r", logn
print n, "d_dd", loglogn
print n, "d_dr", logn + 1 - int(math.pow(2,loglogn))
print n, "delta", delta_encode(n)
#print n, "gamma", gamma_encode(n)
#print n, "binary", binary_encode(n)

+ binary_encode(n, logn)

BYTE-ALIGNED CODES

= Variable-length bit encodings can be a problem

on processors that process bytes

= v-byte is a popular byte-aligned code

= Similar to Unicode UTF-8
= Shortest v-byte code is 1 byte

=Numbers are 1 to 4 bytes, with high bit 1 in the

last byte, O otherwise

38

V-BYTE ENCODING

| Number of bytes

k<27 1

2T < k<2 |2

21 <k <221 |3

221 <k <22 |4
k Binary Code | Hexadecimal
1 1 0000001 81
6 1 0000110 86
127 11111111 FF
128 0 0000001 1 0000000 01 80
130 0 0000001 1 0000010 01 82
20000 | 0 0000001 0 0011100 1 0100000 01 1C A0

V-BYTE ENCODER

public void encode(int[] input, ByteBuffer output) {
for(int i : input) {
while(i >= 128) {
output.put(i & Ox7F);
i>>>=17;
}
output.put(i | 0x80);

39

V-BYTE DECODER

public void decode(byte[] input, IntBuffer output) {
for(int i=0; i < input.length; i++) {
int position = O;
int result = ((int)input[i] & O0x7F);

while((input[i] & 0x80) == 0) {
i+=1;
position += 1;
int unsignedByte = ((int)input[i] & O0x7F);
result |= (unsignedByte << (7*position));

¥

output.put (result);

COMPRESSION EXAMPLE

= Consider invert list with positions:
(1,2,[1,7])(2,3,[6,17,197])(3, 1, [1])

= Delta encode document numbers and positions:

(1,2,[1,6])(1,3,[6,11,180])(1, 1, [1])

= Compress using v-byte:
81 82 81 86 81 82 86 8B 01 B4 81 81 81

40

OUTLINE

= Architecture of Search Engines
= Index Construction
= Boolean Retrieval

= Vector Space Model for Ranked Retrieval

= How do we process a (Boolean) query?

41

QUERY PROCESSING: AND

= Consider processing the query:
Brutus AND Caesar
= Locate Brutus in the Dictionary;
= Retrieve its postings.
= Locate Caesar in the Dictionary;
= Retrieve its postings.

= “Merge” the two postings:

32164 - 128] Brutus
- . 3 . E 13|21} 34| Caesar

)

THE MERGE

= Walk through the two postings simultaneously, in time
linear in the total number of postings entries

28 -16 32— 64 —128| Brutus
13 21 [+ 34 | Caesar

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by doclD.

©

INTERSECTING TWO POSTINGS LINTS
(A “MERGE” ALGORITHI)

INTERSECT(p1, p2)
1 answer «— ()
2 while p; # NIL and p, # NIL
3 do if docID(p1) = doclD(p»)
then ADD(answer, doc/D(py))

p1 < next(py)

p2 «— next(p2)
else if docID(p1) < doclD(p2)

then p; < next(p)
9 else py < next(pz)
10 return answer

o ~N O 01 &~

BOOLEAN QUERIES: EXACT MATCH

» The Boolean retrieval model is being able to ask a query thatis a
Boolean expression:

» Boolean Queries are queries using AND, OR and NOT to join query
terms

» Views each document as a set of words
» Is precise: document matches condition or not.

» Perhaps the simplest model to build an IR system on
» Primary commercial retrieval tool for 3 decades.

» Many search systems you still use are Boolean:
» Email, library catalog, Mac OS X Spotlight

43

EXAMPLE: WESTLAW
HTTP://WWWWESTLAW.COM/

» Largest commercial (paying subscribers) legal search
service (started 1975; ranking added 1992)

= Tens of terabytes of data; 700,000 users
= Majority of users still use boolean queries

» Example query:
= What is the statute of limitations in cases involving the federal
tort claims act?
= LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
= /3 = within 3 words, /S = in same sentence

EXAMPLE: WESTLAW
HTTP:/ /WWWWESTLAW.COM/

= Another example query:
= Requirements for disabled people to be able to access a workplace

= Note that SPACE is disjunction, not conjunction!

* Long, precise queries; proximity operators; incrementally
developed; not like web search

= Many professional searchers still like Boolean search
= You know exactly what you are getting

= But that doesn’t mean it actually works better....

44

OUTLINE

= Architecture of Search Engines
= Index Construction
= Boolean Retrieval

= Vector Space Model for Ranked Retrieval

RANKED RETRIEVAL

= Thus far, our queries have all been Boolean.
* Documents either match or don’t.

= Good for expert users with precise understanding of
their needs and the collection.

= Also good for applications: Applications can easily consume
1000s of results.

= Not good for the majority of users.

= Most users incapable of writing Boolean queries (or they are,
but they think it’s too much work).

= Most users don’t want to wade through 1000s of results.
= This is particularly true of web search.

()

45

PROBLEM WITH BOOLEAN SEARCH:
FEAST OR FAMINE

= Boolean queries often result in either too few (=0) or
too many (1000s) results.

= Query 1: “standard user dlink 650” = 200,000 hits

=Query 2: “standard user dlink 650 no card found”: 0
hits

= |t takes a lot of skill to come up with a query that
produces a manageable number of hits.
= AND gives too few; OR gives too many @

RANKED RETRIEVAL MODELS

= Rather than a set of documents satisfying a query
expression, in ranked retrieval models, the system
returns an ordering over the (top) documents in the
collection with respect to a query

= Free text queries: Rather than a query language of
operators and expressions, the user’s query is just one
or more words in a human language

= In principle, there are two separate choices here, but
in practice, ranked retrieval models have normally
been associated with free text queries and vice versa

()

46

FEAST OR FAMINE: NOT A PROBLEM IN
RANKED RETRIEVAL

= When a system produces a ranked result set, large
result sets are not an issue
» Indeed, the size of the result set is not an issue
= We just show the top k (= 10) results
= We don’t overwhelm the user

= Premise: the ranking algorithm works

TERM-DOCUMENT COUNT MATRICES

= Consider the number of occurrences of a term in a document:

= Each document is a count vector jn NY: a column below

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth
Antony 157 73 0 0 0
Brutus 4 157 0 1 0
Caesar 232 227 0 2 1
Calpurnia 0 10 0 0 0
Cleopatra 57 0 0 0 0
mercy 2 0 3 5 5
worser 2 0 1 1 1

0
1
0
0
1
0

47

BAG OF WORDS MODEL

= Vector representation doesn’t consider the ordering
of words in a document

» John is quicker than Mary and Mary is quicker than
John have the same vectors

= This is called the bag of words model.

TERM FREQUENCY TF

= The term frequency tf, ; of term t in document d is defined as
the number of times that t occurs in d.

= We want to use tf when computing query-document match
scores. But how?

= Raw term frequency is not what we want:

= A document with 10 occurrences of the term is more relevant than a
document with 1 occurrence of the term.

= But not 10 times more relevant.

= Relevance does not increase proportionally with term
frequency.

48

LOG-FREQUENCY WEIGHTING

= The log frequency weight of term tind is
1+log,, tf,,, if tf, , >0
Wia =

0, otherwise

*0->0,1->1,2-> 13,10 - 2,1000 - 4, etc.

= Score for a document-query pair: sum over terms t in both g
and d

=score = Zeqmd (1 + log tft’d)

= The score is 0 if none of the query terms is present in the
document.

DOCUMENT FREQUENCY

= Rare terms are more informative than frequent terms

= Recall stop words

= Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

= A document containing this term is very likely to be
relevant to the query arachnocentric

= > We want a high weight for rare terms like
arachnocentric.

49

DOCUMENT FREQUENCY, CONTINUED

* Frequent terms are less informative than rare terms

= Consider a query term that is frequent in the collection (e.g.,
high, increase, line)

= A document containing such a term is more likely to be relevant
than a document that doesn’t

= But it’s not a sure indicator of relevance.

* = For frequent terms, we want high positive weights for words
like high, increase, and line

= But lower weights than for rare terms.

= We will use document frequency (df) to capture this.

IDF WEIGHT

» df, is the document frequency of t: the number of documents
that contain t
= df,is an inverse measure of the informativeness of t
- df, <N

= We define the idf (inverse document frequency) of t by
= We use log (N/df,) instead of N/df, to “dampen” the effect of idf.

idf, =1log,, (N/df)

Will turn out the base of the log is immaterial.

50

IDF EXAMPLE, SUPPOSE N = 1 MILLION

calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

idf, =log,, (N/df))

There is one idf value for each term tin a collection.

()

EFFECT OF IDF ON RANKING

= Does idf have an effect on ranking for one-term queries, like
= iPhone

= idf has no effect on ranking one term queries
= idf affects the ranking of documents for queries with at least two terms

= For the query capricious person, idf weighting makes occurrences of
capricious count for much more in the final document ranking than
occurrences of person.

51

TE-IDF WEIGHTING

= The tf-idf weight of a term is the product of its tf weight and its
idf weight.

w =(1+logtf, ;) xlog,,(N/df,)

= Best known weighting scheme in information retrieval
= Note: the “-” in tf-idf is a hyphen, not a minus sign!
= Alternative names: tf.idf, tf x idf

= [ncreases with the number of occurrences within a document

= Increases with the rarity of the term in the collection

FINAL RANKING OF DOCUMENTS FOR B QUERY

Score(q.d)= Y _ tfidf,,

teqgnd

52

BINARY —> COUNT —> WEIGHT MATRIX

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello

Antony 5.25 3.18 0 0
Brutus 1.21 6.1 0 1
Caesar 8.59 2.54 0 1.51
Calpurnia 0 1.54 0 0
Cleopatra 2.85 0 0 0
mercy 1.51 0 1.9 0.12
worser 1.37 0 0.11 4.15

0

0
0.25

0

0
5.25
0.25

Macbeth

0.35

0

0

0

0
0.88
1.95

Each document is now represented by a real-valued

vector of tf-idf weights € RV

()

VECTOR SPACE MODEL
---- DOCUMENTS AS VECTORS

= So we have a |V|-dimensional vector space
= Terms are axes of the space

= Documents are points or vectors in this space

= Very high-dimensional: tens of millions of dimensions when

you apply this to a web search engine

= These are very sparse vectors - most entries are zero.

(]

53

QUERIES AS VECTORS

= Key idea 1: Do the same for queries: represent them as vectors
in the space

= Key idea 2: Rank documents according to their proximity to the
guery in this space

= proximity = similarity of vectors
= proximity = inverse of distance

= Recall: We do this because we want to get away from the
you’re-either-in-or-out Boolean model.

= Instead: rank more relevant documents higher than less
relevant documents

LENGTH NORMALIZATION

= A vector can be (length-) normalized by dividing each of its
components by its length — for this we use the L, norm:

%, =2
2 il

= Dividing a vector by its L, norm makes it a unit (length) vector
(on surface of unit hypersphere)

54

COSINE(QUERY,DOCUMENT)

Dot product Unit vectors
N] #J ‘,51’ o
COS(q,d) qe q i= 1% i

L

q; is the tf-idf weight of term i in the query
d; is the tf-idf weight of term i in the document

4]

cos(ﬁd) is the cosine similarity of g and d..
equivalently, the cosine of the angle between fand 4.

()

COSINE FOR LENGTH-NORMALIZED
VECTORS

= For length-normalized vectors, cosine similarity is simply the dot product (or

scalar product):

cos(G,d)=G*d = E

=1 l l

for g, d length-normalized.

55

COSINE SIMILARITY ILLUSTRATED

POOR % poor
1

L ilq)

dy
z [
/ L f\
| &~ 8% |
0 Z’_//ﬁ ds o ()

0 7 RICH 5 " RICH

COSINE SIMILARITY AMONGST 3 DOCUMENTS

How similar are

the novel | em | SaS | PP | WK
58 20

SaS: Sense and affection 115
Sensibility jealous 10 7 11
PaP: Pride and gossip 2 0 6

Prejudice, and
WH: Wuthering
Heights?

wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.

S ®

3 DOCUMENTS EXAMPLE CONTD.

Log frequency weighting

After length normalization

3.06 2.76 230 affection 0.789 0.832

affection
jealous
gossip
wuthering

2.00 1.85 2.04 jealous 0.515 0.555
1.30 0 1.78 gossip 0.335 0
0 0 2.58 wuthering 0 0

cos(SaS,PaP) =
0.789 X 0.832 + 0.515 X 0.555 + 0.335 X 0.0 + 0.0 X 0.0

~ 0.94

cos(SaS,WH) =~ 0.79
cos(PaP,WH) =~ 0.69

0.524
0.465
0.405
0.588

()

COMPUTING COSINE SCORES

1

O O WO NOOT B WN

—_

COSINESCORE(q)

float Scores[N] =0

float Length[N]

for each query term t

do calculate w; ¢ and fetch postings list for t
for each pair(d,tf;) in postings list
do Scores[d]+ = w¢ g X Wy g

Read the array Length

for each d

do Scores|d] = Scores[d|/Length|d]

return Top K components of Scores|]

57

SUMMARY - VECTOR SPACE RANKING

= Represent the query as a weighted tf-idf vector
= Represent each document as a weighted tf-idf vector

= Compute the cosine similarity score for the query vector and
each document vector

= Rank documents with respect to the query by score

= Return the top K (e.g., K = 10) to the user

58

